Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Arkh Patol ; 86(2): 52-57, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591907

RESUMO

BACKGROUND: Among oral biopsies, small incisional tissues, have to be preserved all through the processing and embedding to ensure optimal visualization of all the mucosal layers without compromise. Optimal tissue orientation is the most critical step in tissue processing for demonstration of definitive morphology in the sections, which is often more challenging in cases of minute/small or thinner sections using routine paraffin techniques to evaluate accurate diagnosis. Some modification is needed to handle these samples to get a better result. Double embedding technique with some modification has been widely used for small/ thin/ multiple biopsies and gives excellent results in many other fields like general pathology and biotechnology. The double embedding technique though produced excellent and significant results in mucosal biopsies yet, it is of minimal interest among oral pathologists. To best of our knowledge, this is the first study to use double embedding technique for pulp tissues. OBJECTIVE: The present study was aimed to evaluate and compare the ease of embedding and sectioning sections using Agar-Paraffin double embedding technique for small oral mucosal biopsies and thin pulp tissues. MATERIAL AND METHODS: A total of 40 oral tissue samples categorized into two groups were taken for the present study. Group I included 20 small oral mucosal biopsy samples of size ranging from 0.2 to 0.5 cm and Group II included 20 pulp tissues obtained from freshly extracted non carious tooth. 10 blocks were prepared by routine paraffin method and 10 blocks were prepared by modified double embedding method for each group. Scores were given by comparing all the criteria with that of the routine paraffin technique. Chi-square test was used for statistical analysis. RESULTS: The average ease score for the Agar-Paraffin double embedded small/minute biopsies showed better scores than the pulp tissue with that of the routine technique. However, no statistically significant difference was seen among embedding and sectioning sections between the two groups. CONCLUSION: Modified double embedding method is simple and reliable alternative technique that helps in better orientation, processing and sectioning especially for oral small or thin biopsies and delicate pulp tissues.


Assuntos
Parafina , Humanos , Inclusão em Parafina , Ágar , Biópsia
2.
Environ Res ; 247: 118334, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316381

RESUMO

Vancomycin resistance in bacteria has been classified under high priority category by World Health Organization (WHO) and its presence in hospital effluent is reported to be increasing owing to excess antibiotics use. Among various strategies, bacteriophage has been recently considered as a promising biological agent for combating such antimicrobial resistant bacteria (ARB). However, the influence of effluent's properties on phage-ARB interaction in actual hospital effluent is not completely understood. The present works intends to study this influence of hospital effluent and its parameters on the interaction between vancomycin resistant E. coli (VRE) and its host specific bacteriophage. The isolated VRE was identified by 16S rRNA sequencing, matrix-assisted laser desorption/ionization-time of flight (MALDI - TOF) and whole genome sequencing. The infectivity of phage onto host bacteria was investigated using electron microscopic techniques, dynamic light scattering (DLS), spectrofluorophotometer and confirmed using double agar overlay method. The monovalency and polyvalency of isolated phage against various bacterial species were determined. The phage morphology was identical to T7 phage belonging to Podoviridae. The phage lysis was maximum at pH 7 (90.2%), 37 °C (91.6%) and vancomycin concentration of 50 µg/mL in both synthetic media (89.13%) and effluent (100%). At a maximum vancomycin concentration of 100 µg/mL, decrease in Ca, K, Mg and P (up to 19.70, 14.18, 28, and 15.82% respectively) concentration in effluent was observed due to phage infectivity when compared to control. The whole genome sequencing was performed and the bioinformatics analysis presented the role of mdfA gene encoding the efflux pump in causing vancomycin resistance in E. coli. It also depicted the presence of multiple genes responsible for mercury, cobalt, zinc and cadmium resistance in VRE. These results clearly indicate that bacteriophage mediated combating of VRE is possible in actual hospital effluent and can be used as one of the treatment methods.


Assuntos
Bacteriófagos , Vancomicina , Vancomicina/farmacologia , Escherichia coli/genética , Antagonistas de Receptores de Angiotensina , RNA Ribossômico 16S , Inibidores da Enzima Conversora de Angiotensina , Hospitais
3.
Indian J Anaesth ; 67(1): 32-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36970473

RESUMO

Organ transplantation has undergone remarkable revolution in the last two decades and offers a scope for survival amongst patients with end-stage organ failure. Along with availability of advanced surgical equipment and haemodynamic monitors, minimally invasive surgical techniques have emerged as options for surgery both amongst the donors and recipients. Newer trends in haemodynamic monitoring and expertise in ultrasound guided fascial plane blocks have changed the management in both donors and recipients. The availability of factor concentrates and point-of-care tests for coagulation have allowed optimal and restrictive fluid management of patients. Newer immunosuppressive agents are useful in minimising rejection following transplantation. Concepts on enhanced recovery after surgery have allowed early extubation, feeding and shorter hospital stay. This review gives an overview of the recent progress in anaesthesia for organ transplantation.

4.
Leg Med (Tokyo) ; 61: 102210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724676

RESUMO

BACKGROUND: This study is based on blow fly samples collected from 8 medico-legal cases in Tamil Nadu, India. The fly life stages were identified and the consistency of minimum post-mortem intervals (PMImin) estimated by different thermal summation-based methods was assessed. METHODS: PMImin of 8 medico-legal cases was estimated using six different thermal summation constants and lower developmental temperatures that are based on C. megacephala and C. rufifacies developmental data. Limits of agreement (LoA), intra class correlation coefficient (ICC) between PMImin values and margin of error of mean of difference between PMImin values were calculated. RESULTS: Intra-class correlation between the PMImin values estimated using different thermal summation constants based on C. megacephala ranged between 0.89 and 0.98 and coefficient of determination ranged between 0.93 and 0.98. Intra-class correlation between the PMImin values estimated using different thermal summation constants based on C. rufifacies ranged between 0.91 and 0.99 and coefficient of determination ranged between 0.95 and 0.99. The mean difference of PMImin values estimated using different thermal summation methods based on C. megacephala ranged between 1.8 hr and 6.6hr and margin of error ranged between 2.51 and 6.93hr. The mean difference of PMImin values estimated using different thermal summation methods based on C. rufifacies ranged between 3.33 and 31.33hr and margin of error ranged between 4.66 and 32hr. CONCLUSION: Consistency of PMImin values estimated by different thermal summation methods was good to excellent. Thermal summation constants useful in estimation of PMImin with lowest mean difference and margin of error were described.


Assuntos
Besouros , Dípteros , Animais , Calliphoridae , Ciências Forenses , Índia , Temperatura , Larva , Mudanças Depois da Morte
5.
Environ Pollut ; 318: 120933, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565492

RESUMO

The unique properties of reduced graphene oxide (rGO) have drawn the attention of scientists worldwide since the last decade and it is explored for a wide range of applications. However, the rapid expansion of rGO use in various products will eventually lead to environenal exposure and rises a safety concern on the environment and humal health risk. Moreover, the utilization of toxic chemicals for the reduction of graphene oxide (GO) into rGO is not environmentally friendly, warranting the exploration of non-toxic approaches. In the present work, rGO was synthesized using a different dose of gamma-ray irradiation and characterized. The in-vitro and in-vivo analysis indicated that the gamma-irradiated rGO induced toxicity depending on its degree of reduction and dosage. In the L929 cells, rGO-30 KGy significantly induced cytotoxicity even at low concentration (1 mg L-1) by inducing reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme production, nuclear fragmentation and apoptosis. The change in morphology of the cells like membrane blebbing and cell rounding was also observed via FESEM. In the in-vivo model Caenorhabditis elegans, rGO-30 KGy significantly affected the functioning of primary and secondary targeted organs and also negatively influenced the nuclear accumulation of transcription factors (DAF-16/FOXO and SKN-1/Nrf2), neuronal health, and antioxidant defense mechanism of the nematodes. The real-time PCR analysis showed significant up-regulation (ced-3, ced-4, cep-1, egl-1, and hus-1) and down-regulation (ced-9) of the gene involved in germ-line and DNA damage-induced apoptosis. The detailed toxicity mechanism of gamma irradiated rGO has been elucidated. This work highlights the toxicity of rGO prepared by gamma-ray radiation and paves way for understating the toxicity mechanism.


Assuntos
Grafite , Óxidos , Saúde Ambiental , Grafite/toxicidade , Grafite/química , Óxidos/toxicidade , Óxidos/química , Espécies Reativas de Oxigênio , Raios gama
6.
Int J Biol Macromol ; 217: 522-535, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841966

RESUMO

This study describes the fabrication of cellulose scaffold (CS) and cellulose-chitosan (CS/CHI) scaffolds from the immature endosperm of Borassus flabellifer (Linn.) (BF) loaded with platelet rich plasma (PRP). Thus, developed scaffolds were evaluated for their physicochemical and mechanical behavior, growth factor release and biological performance. Additionally, in vivo response was assessed in a sub cutaneous rat model to study vascularization, host inflammatory response and macrophage polarization. The results of this study demonstrated that CS and CS/CHI scaffolds with PRP demonstrated favorable physiochemical and morphogical properties. The scaffold groups CS-PRP and CS/CHI-PRP were able to release growth factors in a well sustained manner under physiological conditions. The presence of PRP in cellulosic scaffolds did show significant differences in their behavior when investigated under in vitro studies, where the release of diverse cytokines improved the cellular proliferation and differentiation of osteoblasts. Finally, the PRP enriched scaffolds when studied under in vivo conditions showed increased angiogenesis and re-epithelialization with adequate collagen deposition and tissue remodeling. Our results suggest that besides the conventional carrier systems, this new-generation of plant-based cellulosic scaffolds with/without any modification can serve as a suitable carrier for PRP encapsulation and release, which can be used in numerous tissue regenerative therapies.


Assuntos
Quitosana , Plasma Rico em Plaquetas , Animais , Celulose/metabolismo , Celulose/farmacologia , Quitosana/metabolismo , Quitosana/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Plasma Rico em Plaquetas/metabolismo , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Carbohydr Polym ; 272: 118494, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420749

RESUMO

In this study, Borassus flabellifer (Linn.) (BF) immature endosperm was decellularized to produce three dimensional (3D) cellulose scaffolds that can support mammalian 3D cell culture. To this regard, we first evaluated the chemical composition, nutritive profile and pharmacological activities of BF endosperm. The results demonstrated that the BF tissue represented a complex concoction of polysaccharides with intrinsic phyto-ingredients which provide excellent pharmacological properties. Furthermore cellulosic scaffolds (CS) obtained from BF was treated with chitosan to produce cellulose-chitosan (CS/CHI) hybrid scaffolds. The comparative investigation on both scaffolds exhibited adequate swelling with controlled porosity and pore-size distribution. The physiochemical characterization showed reduced biodegradation, improved thermal stability and enhanced compressive strength in CS/CHI group. Biological studies reported favorable adhesion and proliferation of fibroblasts with evident cellular penetration and colonization on the both scaffolds. Taken together, plant derived cellulosic scaffolds could be used as an alternative scaffolding material in regenerative medicine.


Assuntos
Celulose , Engenharia Tecidual , Regeneração Óssea , Quitosana , Matriz Extracelular , Alicerces Teciduais
8.
Int J Biol Macromol ; 183: 564-588, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33933542

RESUMO

Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.


Assuntos
Nanocompostos , Polissacarídeos/química , Impressão Tridimensional/tendências , Medicina Regenerativa/tendências , Engenharia Tecidual/tendências , Alginatos/química , Animais , Carragenina/química , Celulose/química , Difusão de Inovações , Previsões , Humanos , Pectinas/química , Sefarose/química
9.
Eur J Pharm Sci ; 161: 105784, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33677023

RESUMO

Antimicrobial peptides (AMPs) are increasingly sought-after and researched antimicrobial agents due to its desired pharmacological properties and the continuous diminishing efficacy of antibiotics. In addition to this line of research, the aim of the present study is to determine the antimicrobial and anticancer activity of a de novo designed α-helical peptide. Circular dichroism showed 100% helical nature of the peptide in 10 mM SDS. Notably, the peptide exerted significant antimicrobial activity against the reference and antibiotic-resistant clinical isolates belonging to Pseudomonas sp. at a MIC and MBC of 2 and 8 µM, respectively. The progressive disruption and disturbance of cell membrane in the overall topography was observed in the scanning electron microscopy (SEM) micrographs of Pseudomonas aeruginosa ATCC 27853 treated with the peptide as compared to untreated control. The results of time-kill kinetics showed complete lysis at 3x MIC after 50 min of incubation of the microbe with the peptide. Moreover, the peptide did not lyse human RBCs even at the highest concentration of the peptide (10 mM) and retained its activity upon treatment at 0.5 mg/ml trypsin. Cancer cell lines, viz. A549 and MCF-7 were also found to be sensitive to peptide activity showing 50% reduction in survivability at 4 and 2 µM, respectively; however, L929 cells were unaffected. Drastic membrane permeability and necrotic mode of lysis of peptide-treated-A549 cells were affirmed by propidium iodide and live/dead cell staining. The results showed that the designed peptide could be an efficient drug molecule for clinical studies subjected to successful experiments on animal models.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
10.
Chemosphere ; 275: 130061, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677277

RESUMO

Designing a cost-effective, high potential and recyclable catalyst remains a challenge. In the present work, a monolithic PAM-GO-Ag hydrogel is prepared by a facile, eco-friendly method using gamma-ray irradiation. The formation of GO-Ag composite by gamma radiation is also investigated and it is authenticated by XRD, FTIR, Raman, XPS and TEM analysis. The PAM-GO-Ag hydrogel exhibits excellent catalytic activity to different catalysant like methylene blue, Rhodamine-B, and pharmaceutical compound ciprofloxacin. The high catalyst carrying capacity and rapid electron shuttling ability of GO plays a significant role in the high performance of PAM-GO-Ag hydrogel. The PAM-GO-Ag hydrogel also exhibits excellent antibacterial activity. The damaged cell membrane, protein leakage, and increased ROS level contribute to the antibacterial activity of PAM-GO-Ag. The monolithic structure of PAM-GO-Ag hydrogel makes it easy to handle, recover, and reuse for several runs without significant loss of catalytic and antibacterial activity. All these results showed the possible application of PAM-GO-Ag hydrogel as a promising catalyst for the reduction of different pollutants and antibacterial agents on a large scale with good reusability.


Assuntos
Poluentes Ambientais , Grafite , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Nanogéis , Óxidos , Prata
11.
Phys Rev E ; 104(6-2): 065109, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030926

RESUMO

In this work, the electrohydrodynamic instability induced by a unipolar charge injection is extended from a single-phase dielectric liquid to a two-phase system that consists of a liquid-air interface. A volume-of-fluid model-based two-phase solver was developed with simplified Maxwell equations implemented in the open-source platform OpenFOAM. The numerically obtained critical value for the linear stability matches well with the theoretical values. To highlight the effect of the slip boundary at interface, the deformation of the interface is ignored. A bifurcation diagram with hysteresis loop linking the linear and finite-amplitude criteria, which is U_{f}=0.059, was obtained in this situation. It is concluded that the lack of viscous effect at interface leads to a significant increase in the flow intensity, which is the reason for the smaller instability threshold in two-phase system. The presence of interface also changes the flow structure and results in a shear distribution of electric force, which may play an important role in the interface deformation.

12.
Mater Sci Eng C Mater Biol Appl ; 106: 110164, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753353

RESUMO

This paper investigates the effect of microstructure modification by heat treatment on stress corrosion cracking (SCC) behavior of Mg4Zn alloy in simulated body fluid (SBF). Mg4Zn alloy in as cast, solution heat treated and peak aged conditions was susceptible to SCC in SBF when strained at 3.6 × 10-6 s-1. SCC index based on fracture energy is least for solutionized alloy (0.84), while 0.88 for as cast and peak aged alloys. Fractographic analysis indicates predominantly intergranular SCC for solution treated alloy initiated by anodic dissolution near grain boundaries. As cast and peak aged alloy shows mainly transgranular failure due to hydrogen embrittlement adjacent to secondary phase particles.


Assuntos
Líquidos Corporais/química , Magnésio/química , Ligas/química , Animais , Corrosão , Humanos , Hidrogênio/química
13.
Acta Crystallogr C Struct Chem ; 75(Pt 8): 1091-1101, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31380792

RESUMO

A new set of differently hydrated barium and strontium squarates, namely poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium] monohydrate], {[Ba(C4O4)(H2O)3]·H2O}n (1), poly[[diaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)strontium] monohydrate], {[Sr(C4O4)(H2O)2]·H2O}n (2), and poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium/strontium(0.85/0.15)] monohydrate], {[Ba0.85Sr0.15(C4O4)(H2O)3]·H2O}n (3), is reported. The study of their crystal structures indicates that all the complexes crystallize in the triclinic space group P-1. Complexes 1 and 3 have a rare combination of squarate units coordinated through monodentate O atoms to two different metal atoms and through two bidentate O atoms to three different metal atoms. Furthermore, they have three coordinated water molecules to give a coordination number of nine. The squarate ligands in complex 2 exhibit two different coordination modes: (i) monodentate O atoms coordinated to four different Sr atoms and (ii) two monodentate O atoms coordinated to two different metal atoms with the other two O atoms bidentate to four different Sr atoms. All the compounds decompose to give the respective carbonates when heated to 800 °C, as evidenced by thermogravimetry/differential thermal analysis (TG-DTA), which are clusters of nanoparticles. Complexes 1 and 3 show additional endothermic peaks at 811 and 820 °C, respectively, indicating the phase transition of BaCO3 from an orthorhombic (α-Pmcn) to a trigonal phase (ß-R3m). All three complexes have significant DNA-binding constants, ranging from 2.45 × 104 to 9.41 × 104 M-1 against EB-CT (ethidium bromide-calf thymus) DNA and protein binding constants ranging from 1.1 × 105 to 8.6 × 105 with bovine serum albumin. The in vitro cytotoxicity of the complexes is indicated by the IC50 values, which range from 128.8 to 261.3 µg ml-1. Complex 3 shows better BSA binding, antioxidant activity against the DPPH radical and cytotoxicity than complexes 1 and 2.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclobutanos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Substâncias Intercalantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Bário/química , Bovinos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Ciclobutanos/síntese química , Ciclobutanos/química , Ciclobutanos/metabolismo , DNA/metabolismo , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Humanos , Ligação de Hidrogênio , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Ligantes , Células MCF-7 , Estrutura Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Estrôncio/química , Água/química
14.
Indian J Clin Biochem ; 34(1): 60-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30728674

RESUMO

We investigated the combined effect of fluoride exposure and Vitamin D deficiency in causing bone damage as a precursor to development of Fluorotoxic Metabolic Bone Disease. Thirty-six male Sprague-Dawley rats were divided into 6 groups of six; 3 groups received a Vitamin D deficient diet whereas the other 3 received a Vitamin D adequate diet. Serum total 25-hydroxyvitamin D (25OHD), calcium, phosphorus, creatinine, Alkaline phosphatase (ALP), albumin, Parathyroid hormone (PTH), Osteocalcin and C terminal telopeptide (CTx) were measured following exposure to varying levels of fluoride in drinking water (< 1.0, 15 and 50 ppm). Full body Dual-energy X-ray Absorptiometry (DXA) scans were used to examine changes in bone morphology pre and post exposure to fluoride. Renal tubular function was assessed using serum creatinine and urine Cystatin C. Histopathological examination of sections of bone and kidney tissues were also performed. Prior to fluoride exposure, DXA scans revealed a significant decrease in Bone Mineral Density (BMD) and Bone Mineral content (BMC) (p < 0.05) but a significant increase in fat mass (p < 0.05) and fat percentage (p < 0.01) among Vitamin D deficient rats, with no significant change in biochemical parameters. Following exposure to fluoride, BMD was significantly increased (p < 0.05) in both groups with a corresponding increase in serum ALP, bone fluoride content, Osteocalcin, CTx and urine fluoride with increasing levels of fluoride exposure. Serum creatinine calcium and phosphate and urinary cystatin C levels showed no significant changes. Light microscopy examination revealed mild thickening and increased osteoid in 80% of the Vitamin D deficient rats exposed to high levels of fluoride but renal tubular changes were found only in one experimental and one control animal. Fluoride deposited in rat bone affects both osteoblastic and osteoclastic activity. Also, these effects are accentuated in the presence of Vitamin D deficiency.

15.
Curr Osteoporos Rep ; 16(3): 224-235, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663192

RESUMO

PURPOSE OF REVIEW: Lack of vascularity in the human knee meniscus often leads to surgical removal (total or partial meniscectomy) in the case of severe meniscal damage. However, complete recovery is in question after such removal as the meniscus plays an important role in knee stability. Thus, meniscus tissue regeneration strategies are of intense research interest in recent years. RECENT FINDINGS: The structural complexity and inhomogeneity of the meniscus have been addressed with processing technologies for precisely controlled three dimensional (3D) complex porous scaffold architectures, the use of biomolecules and nanomaterials. The regeneration and replacement of the total meniscus have been studied by the orthopedic and scientific communities via successful pre-clinical trials towards mimicking the biomechanical properties of the human knee meniscus. Researchers have attempted different regeneration strategies which contribute to in vitro regeneration and are capable of repairing meniscal tears to some extent. This review discusses the present state of the art of these meniscus tissue engineering aspects.


Assuntos
Regeneração Tecidual Guiada/métodos , Meniscos Tibiais , Lesões do Menisco Tibial/terapia , Humanos , Articulação do Joelho , Meniscectomia , Nanoestruturas , Recuperação de Função Fisiológica , Engenharia Tecidual , Alicerces Teciduais
16.
Indian J Clin Biochem ; 33(1): 86-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29371775

RESUMO

A variety of methods, including the Ion Selective Electrode (ISE), have been used for estimation of fluoride levels in drinking water. But as these methods suffer many drawbacks, the newer method of IC has replaced many of these methods. The study aimed at (1) validating IC for estimation of fluoride levels in drinking water and (2) to assess drinking water fluoride levels of villages in and around Vellore district using IC. Forty nine paired drinking water samples were measured using ISE and IC method (Metrohm). Water samples from 165 randomly selected villages in and around Vellore district were collected for fluoride estimation over 1 year. Standardization of IC method showed good within run precision, linearity and coefficient of variance with correlation coefficient R2 = 0.998. The limit of detection was 0.027 ppm and limit of quantification was 0.083 ppm. Among 165 villages, 46.1% of the villages recorded water fluoride levels >1.00 ppm from which 19.4% had levels ranging from 1 to 1.5 ppm, 10.9% had recorded levels 1.5-2 ppm and about 12.7% had levels of 2.0-3.0 ppm. Three percent of villages had more than 3.0 ppm fluoride in the water tested. Most (44.42%) of these villages belonged to Jolarpet taluk with moderate to high (0.86-3.56 ppm) water fluoride levels. Ion Chromatography method has been validated and is therefore a reliable method in assessment of fluoride levels in the drinking water. While the residents of Jolarpet taluk (Vellore distict) are found to be at a high risk of developing dental and skeletal fluorosis.

17.
Biomed Mater ; 12(6): 065001, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28703122

RESUMO

Poly-ε-caprolactone (PCL)-based nanocomposite scaffolds with different concentrations of carbon nanofillers (carbon nanofibers (CNFs), nanographite, and exfoliated graphite) have been studied to investigate the effect of electrical conductivity and biomolecule supplementation for enhanced human meniscal cell attachment, growth, and proliferation. The incorporation of carbon nanofillers was found to improve the mechanical and electrical properties. CNF-based nanocomposite scaffolds showed the highest electrical conductivity with significant improvements in mechanical properties (more than 50% tensile strength increase than PCL with 10% (w/w) CNF). All nanocomposite scaffolds were subjected to cytotoxicity studies using primary meniscus cells. The nanocomposite scaffolds showing higher cell viability were selected and tested for meniscal cell attachment and proliferation assays such as total deoxyribonucleic acid content, extracellular matrix secretion, nuclear staining, and cell attachment studies using a scanning electron microscope. When an optimized combination of biomolecules is supplemented in the cell culture medium, a synergistic effect of the electrical conductivity and biomolecule combination is observed, especially in the case of highly conducting CNF (7.5% and 10% (w/w))-based nanocomposite scaffolds. Our findings suggest that electrically conductive scaffolds with optimized biomolecules in cell culture medium can potentially be used for successful human meniscal tissue engineering applications.


Assuntos
Adesão Celular , Proliferação de Células , Condutividade Elétrica , Menisco/citologia , Nanocompostos/química , Poliésteres/química , Sobrevivência Celular , Células Cultivadas , Humanos , Menisco/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química
18.
Biofabrication ; 9(1): 015016, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28000609

RESUMO

The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer metastasis. Our findings suggested that CCGM can be used as a tissue-like 3D model for studying breast cancer metastatic events in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno/química , Gelatina/química , Nanofibras/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanofibras/toxicidade , Metástase Neoplásica , Progesterona/farmacologia
19.
J Membr Biol ; 249(6): 813-822, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27730256

RESUMO

In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)-polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers.


Assuntos
Menisco/citologia , Nanofibras/química , Álcool de Polivinil/química , Cultura Primária de Células , Seda/química , Alicerces Teciduais/química , Adesão Celular , Proliferação de Células , Matriz Extracelular , Humanos , Nanofibras/ultraestrutura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
20.
J Colloid Interface Sci ; 484: 183-195, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27610473

RESUMO

A facile solvothermal method was adopted to prepare monodispersed surface functionalized Fe3O4 nanoparticles via self assembly process. The pure yeast, diethylamine functionalized Fe3O4 nanoparticles (DMNPs) and yeast cross-linked Fe3O4 nanoparticles (YcMNPs) were used for the efficient removal of arsenate from aqueous solution. The crystal structure, morphology and magnetic properties of these nanoparticles were characterized by using X-ray diffraction, field emission scanning electron microscopy and vibrating sample magnetometer. The observed physico-chemical properties confirms the metal binding nature of prepared samples. The adsorption of As(V) on the functionalized magnetite nanoparticles was tested under different operating conditions like contact time, adsorbate dosage, adsorbate concentration and pH. The faster removal of As(V) was obtained using YcMNPs (99%) than DMNPs and pure yeast. The adsorption equilibrium data obeys Langmuir isotherm than Freundlich model and the kinetics data well depicts the pseudo-second-order model. The batch column experiment confirms the adequate desorption as well as reusability without significant loss of efficiency. The results reveal the technical feasibility of the prepared nanoparticles for their easy synthesis, recovery, cost effective, eco-friendly and a promising advanced adsorbent for environmental pollution.


Assuntos
Arsênio/isolamento & purificação , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Saccharomyces cerevisiae/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Água do Mar/química , Termodinâmica , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA